Fabian Pedregosa [email protected], Gaël Varoquaux [email protected], Vincent Michel [email protected], Bertrand Thirion [email protected], Olivier Grisel [email protected], Mathieu Blondel [email protected], Gilles Louppe [email protected], Peter Prettenhofer [email protected], Ron Weiss [email protected], Vincent Dubourg [email protected], Jake Vanderplas [email protected], Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort [email protected], Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Gilles Louppe, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos [email protected], David Cournapeau [email protected], Matthieu Brucher [email protected], Matthieu Perrot [email protected]ŕ, Varoquaux, GramfortDuchesnay Pedregosa, Al David Cournapeau, Matthieu Brucher, Matthieu Perrot, Edouard Duchesnay [email protected], Alexandre Gramfort INRIA Saclay Neurospin, Bât 145, CEA 91191Saclay, Gif sur Yvette -France, Nuxeo 20 rue Soleillet 75020Paris -France, Dept. of EE & CS Kobe University 1-1 Rokkodai, Nada Kobe 6578501Japan, University of Liège Liège Belgium, Bauhaus-Universität Weimar Bauhausstr. 1199421Weimar -Germany, Google Inc 76 Ninth Avenue10011New York, ClermontNYUSA, Astronomy Department Université, IFMA LaMI BP 104483867, 63000Clermont-Ferrand -FranceEA, IESL Lab UMass Amherst University of Washington Box351580, 98195, 01002, CB3 0FASeattle, Amherst, CambridgeWA, MAUSA Alexandre Passos, USA, UK, CSTJF avenue Larribau Total SA 64000Pau -France, LNAO Neurospin Bât 145, CEA 91191Saclay, Gif sur Yvette -France Editor: Mikio Braun (2011)
Scikit-learn is a Python module that integrates a variety of machine learning algorithms suitable for medium-scale supervised and unsupervised problems. It is designed for ease of use, performance, documentation, and API consistency, making it accessible to non-specialists in various fields. The project emphasizes code quality, community-driven development, minimal dependencies, and a rich documentation that includes user guides and examples. Scikit-learn incorporates technologies such as Numpy and Scipy and allows for efficient model selection and evaluation through cross-validation. The library is continually evolving, with plans for further enhancements including online learning.
This paper employs the following methods:
The following datasets were used in this research:
The authors identified the following limitations: