DDAD
|
Anomaly Detection with Conditioned Denoising Diff…
|
98.90
|
2023-05-25
|
|
DiffusionAD
|
DiffusionAD: Norm-guided One-step Denoising Diffu…
|
98.80
|
2023-03-15
|
|
GLASS
|
A Unified Anomaly Synthesis Strategy with Gradien…
|
98.80
|
2024-07-12
|
|
TransFusion
|
TransFusion -- A Transparency-Based Diffusion Mod…
|
98.70
|
2023-11-16
|
|
GLAD
|
GLAD: Towards Better Reconstruction with Global a…
|
98.30
|
2024-06-11
|
|
EfficientAD-M
|
EfficientAD: Accurate Visual Anomaly Detection at…
|
98.10
|
2023-03-25
|
|
HETMM
|
Hard-normal Example-aware Template Mutual Matchin…
|
98.10
|
2023-03-28
|
|
RealNet
|
RealNet: A Feature Selection Network with Realist…
|
97.80
|
2024-03-09
|
|
PBAS
|
Progressive Boundary Guided Anomaly Synthesis for…
|
97.70
|
2024-12-23
|
|
AnomalyDINO-S (full-shot)
|
AnomalyDINO: Boosting Patch-based Few-shot Anomal…
|
97.60
|
2024-05-23
|
|
EfficientAD-S
|
EfficientAD: Accurate Visual Anomaly Detection at…
|
97.50
|
2023-03-25
|
|
FAIRnoDTD
|
FAIR: Frequency-aware Image Restoration for Indus…
|
97.10
|
2023-09-13
|
|
CRAS
|
Center-aware Residual Anomaly Synthesis for Multi…
|
97.00
|
2025-05-23
|
|
INP-Former ViT-B (model-unified multi-class)
|
Exploring Intrinsic Normal Prototypes within a Si…
|
96.60
|
2025-03-04
|
|
URD
|
Unlocking the Potential of Reverse Distillation f…
|
96.50
|
2024-12-10
|
|
Dinomaly ViT-L (model-unified multi-class)
|
Dinomaly: The Less Is More Philosophy in Multi-Cl…
|
96.10
|
2024-05-23
|
|
D3AD
|
Dynamic Addition of Noise in a Diffusion Model fo…
|
96.00
|
2024-01-09
|
|
AST
|
Asymmetric Student-Teacher Networks for Industria…
|
94.90
|
2022-10-14
|
|
EdgRec
|
Reconstruction from edge image combined with colo…
|
94.20
|
2022-10-26
|
|
SuperSimpleNet
|
SuperSimpleNet: Unifying Unsupervised and Supervi…
|
93.40
|
2024-08-06
|
|
Student-Teacher
|
Uninformed Students: Student-Teacher Anomaly Dete…
|
93.20
|
2019-11-06
|
|
MuSc (zero-shot)
|
MuSc: Zero-Shot Industrial Anomaly Classification…
|
92.80
|
2024-01-30
|
|
AnomalyDINO-S (4-shot)
|
AnomalyDINO: Boosting Patch-based Few-shot Anomal…
|
92.60
|
2024-05-23
|
|
CFA
|
CFA: Coupled-hypersphere-based Feature Adaptation…
|
92.00
|
2022-06-09
|
|
CFLOW
|
CFLOW-AD: Real-Time Unsupervised Anomaly Detectio…
|
91.50
|
2021-07-27
|
|
VCP-CLIP
|
VCP-CLIP: A visual context prompting model for ze…
|
90.70
|
2024-07-17
|
|
AnomalyDINO-S (2-shot)
|
AnomalyDINO: Boosting Patch-based Few-shot Anomal…
|
89.70
|
2024-05-23
|
|
SPD
|
SPot-the-Difference Self-Supervised Pre-training …
|
87.80
|
2022-07-28
|
|
AnomalyDINO-S (1-shot)
|
AnomalyDINO: Boosting Patch-based Few-shot Anomal…
|
87.40
|
2024-05-23
|
|
WinCLIP+ (4-shot)
|
WinCLIP: Zero-/Few-Shot Anomaly Classification an…
|
87.30
|
2023-03-26
|
|
PaDiM
|
PaDiM: a Patch Distribution Modeling Framework fo…
|
85.90
|
2020-11-17
|
|
AdaCLIP
|
AdaCLIP: Adapting CLIP with Hybrid Learnable Prom…
|
85.80
|
2024-07-22
|
|
WinCLIP+ (2-shot)
|
WinCLIP: Zero-/Few-Shot Anomaly Classification an…
|
84.60
|
2023-03-26
|
|
WinCLIP+ (1-shot)
|
WinCLIP: Zero-/Few-Shot Anomaly Classification an…
|
83.80
|
2023-03-26
|
|
STPM
|
Student-Teacher Feature Pyramid Matching for Anom…
|
83.30
|
2021-03-07
|
|
SPADE
|
Sub-Image Anomaly Detection with Deep Pyramid Cor…
|
82.10
|
2020-05-05
|
|
AnomalyCLIP
|
AnomalyCLIP: Object-agnostic Prompt Learning for …
|
82.10
|
2023-10-29
|
|
WinCLIP (0-shot)
|
WinCLIP: Zero-/Few-Shot Anomaly Classification an…
|
78.10
|
2023-03-26
|
|
DRAEM
|
DRAEM -- A discriminatively trained reconstructio…
|
73.10
|
2021-08-17
|
|
Reverse Distillation
|
Anomaly Detection via Reverse Distillation from O…
|
70.90
|
2022-01-26
|
|
DSR
|
DSR -- A dual subspace re-projection network for …
|
68.10
|
2022-08-02
|
|
FAVAE
|
Anomaly localization by modeling perceptual featu…
|
67.90
|
2020-08-12
|
|
FastFlow
|
FastFlow: Unsupervised Anomaly Detection and Loca…
|
59.80
|
2021-11-15
|
|
APRIL-GAN
|
APRIL-GAN: A Zero-/Few-Shot Anomaly Classificatio…
|
32.30
|
2023-05-27
|
|
SAA+
|
Segment Any Anomaly without Training via Hybrid P…
|
27.07
|
2023-05-18
|
|