ML Research Wiki / Benchmarks / Discourse Parsing / Instructional-DT (Instr-DT)

Instructional-DT (Instr-DT)

Discourse Parsing Benchmark

Performance Over Time

📊 Showing 12 results | 📏 Metric: Standard Parseval (Nuclearity)

Top Performing Models

Rank Model Paper Standard Parseval (Nuclearity) Date Code
1 Bottom-up (DeBERTa) A Simple and Strong Baseline for End-to-End Neural RST-style Discourse Parsing 77.80 2022-10-15 📦 nttcslab-nlp/rstparser_emnlp22
2 Top-down (DeBERTa) A Simple and Strong Baseline for End-to-End Neural RST-style Discourse Parsing 77.30 2022-10-15 📦 nttcslab-nlp/rstparser_emnlp22
3 Top-down (RoBERTa) A Simple and Strong Baseline for End-to-End Neural RST-style Discourse Parsing 75.70 2022-10-15 📦 nttcslab-nlp/rstparser_emnlp22
4 Top-down (XLNet) A Simple and Strong Baseline for End-to-End Neural RST-style Discourse Parsing 74.30 2022-10-15 📦 nttcslab-nlp/rstparser_emnlp22
5 Top-down (SpanBERT) A Simple and Strong Baseline for End-to-End Neural RST-style Discourse Parsing 73.70 2022-10-15 📦 nttcslab-nlp/rstparser_emnlp22
6 Bottom-up (XLNet) A Simple and Strong Baseline for End-to-End Neural RST-style Discourse Parsing 73.60 2022-10-15 📦 nttcslab-nlp/rstparser_emnlp22
7 Bottom-up (RoBERTa) A Simple and Strong Baseline for End-to-End Neural RST-style Discourse Parsing 73.20 2022-10-15 📦 nttcslab-nlp/rstparser_emnlp22
8 Bottom-up (SpanBERT) A Simple and Strong Baseline for End-to-End Neural RST-style Discourse Parsing 72.90 2022-10-15 📦 nttcslab-nlp/rstparser_emnlp22
9 Bottom-up (BERT) A Simple and Strong Baseline for End-to-End Neural RST-style Discourse Parsing 66.60 2022-10-15 📦 nttcslab-nlp/rstparser_emnlp22
10 Guz et al. (2020) (pretrained) Unleashing the Power of Neural Discourse Parsers -- A Context and Structure Aware Approach Using Large Scale Pretraining 65.41 2020-11-06 -

All Papers (12)