EffNet-L2 (SAM)
|
Sharpness-Aware Minimization for Efficiently Impr…
|
97.10
|
2020-10-03
|
|
BiT-L (ResNet)
|
Big Transfer (BiT): General Visual Representation…
|
96.62
|
2019-12-24
|
|
µ2Net+ (ViT-L/16)
|
A Continual Development Methodology for Large-sca…
|
95.50
|
2022-09-15
|
|
µ2Net (ViT-L/16)
|
An Evolutionary Approach to Dynamic Introduction …
|
95.30
|
2022-05-25
|
|
BiT-M (ResNet)
|
Big Transfer (BiT): General Visual Representation…
|
94.47
|
2019-12-24
|
|
NAT-M4
|
Neural Architecture Transfer
|
94.30
|
2020-05-12
|
|
NAT-M3
|
Neural Architecture Transfer
|
94.10
|
2020-05-12
|
|
NAT-M2
|
Neural Architecture Transfer
|
93.50
|
2020-05-12
|
|
ResNet-152-SAM
|
When Vision Transformers Outperform ResNets witho…
|
93.30
|
2021-06-03
|
|
ViT-B/16- SAM
|
When Vision Transformers Outperform ResNets witho…
|
93.10
|
2021-06-03
|
|
ViT-S/16- SAM
|
When Vision Transformers Outperform ResNets witho…
|
92.90
|
2021-06-03
|
|
Mixer-B/16- SAM
|
When Vision Transformers Outperform ResNets witho…
|
92.50
|
2021-06-03
|
|
ResNet-50-SAM
|
When Vision Transformers Outperform ResNets witho…
|
91.60
|
2021-06-03
|
|
Mixer-S/16- SAM
|
When Vision Transformers Outperform ResNets witho…
|
88.70
|
2021-06-03
|
|
SE-ResNet-101 (SAP)
|
Stochastic Subsampling With Average Pooling
|
86.01
|
2024-09-25
|
|
PreResNet-101
|
How to Use Dropout Correctly on Residual Networks…
|
85.59
|
2023-02-13
|
|
ResNet-101 (ideal number of groups)
|
On the Ideal Number of Groups for Isometric Gradi…
|
77.08
|
2023-02-07
|
|
Assemble-ResNet-FGVC-50
|
Compounding the Performance Improvements of Assem…
|
5.70
|
2020-01-17
|
|
ViT-B/16
|
An Image is Worth 16x16 Words: Transformers for I…
|
|
2020-10-22
|
|