ML Research Wiki / Benchmarks / Image Clustering / ImageNet

ImageNet

Image Clustering Benchmark

Performance Over Time

📊 Showing 12 results | 📏 Metric: Accuracy

Top Performing Models

Rank Model Paper Accuracy Date Code
1 TURTLE (CLIP + DINOv2) Let Go of Your Labels with Unsupervised Transfer 72.90 2024-06-11 📦 mlbio-epfl/turtle
2 MIM-Refiner (D2V2-ViT-H/14) MIM-Refiner: A Contrastive Learning Boost from Intermediate Pre-Trained Representations 67.30 2024-02-15 📦 ml-jku/MIM-Refiner 📦 BenediktAlkin/vtab1k-pytorch
3 SeLa Self-labelling via simultaneous clustering and representation learning 66.40 2019-11-13 📦 yukimasano/self-label 📦 mingu6/action_seg_ot 📦 hsfzxjy/swavx 📦 ananyahjha93/swav 📦 vinhdv1628/image_classification_task
4 PRO-DSC Exploring a Principled Framework for Deep Subspace Clustering 65.00 2025-03-21 📦 mengxianghan123/PRO-DSC
5 MIM-Refiner (MAE-ViT-H/14) MIM-Refiner: A Contrastive Learning Boost from Intermediate Pre-Trained Representations 64.60 2024-02-15 📦 ml-jku/MIM-Refiner 📦 BenediktAlkin/vtab1k-pytorch
6 TEMI MSN (ViT-L) Exploring the Limits of Deep Image Clustering using Pretrained Models 61.60 2023-03-31 📦 HHU-MMBS/TEMI-official-BMVC2023
7 MAE-CT (ViT-H/16 best) Contrastive Tuning: A Little Help to Make Masked Autoencoders Forget 58.00 2023-04-20 📦 ml-jku/mae-ct
8 TEMI DINO (ViT-B) Exploring the Limits of Deep Image Clustering using Pretrained Models 58.00 2023-03-31 📦 HHU-MMBS/TEMI-official-BMVC2023
9 MAE-CT (ViT-H/16 mean) Contrastive Tuning: A Little Help to Make Masked Autoencoders Forget 57.10 2023-04-20 📦 ml-jku/mae-ct
10 SeCu Stable Cluster Discrimination for Deep Clustering 53.50 2023-11-24 📦 idstcv/secu

All Papers (12)