ML Research Wiki / Benchmarks / Unsupervised Domain Adaptation / ImageNet-R

ImageNet-R

Unsupervised Domain Adaptation Benchmark

Performance Over Time

📊 Showing 8 results | 📏 Metric: Top 1 Error

Top Performing Models

Rank Model Paper Top 1 Error Date Code
1 ResNet50, BatchNorm adaptation Improving robustness against common corruptions by covariate shift adaptation 59.90 2020-06-30 📦 bethgelab/robustness 📦 Claydon-Wang/OFTTA
2 ResNet50 + ENT If your data distribution shifts, use self-learning 56.10 2021-04-27 📦 bethgelab/robustness
3 ResNet50 + RPL If your data distribution shifts, use self-learning 54.10 2021-04-27 📦 bethgelab/robustness
4 ResNet50+DeepAug+Augmix, BatchNorm adaptation Improving robustness against common corruptions by covariate shift adaptation 48.90 2020-06-30 📦 bethgelab/robustness 📦 Claydon-Wang/OFTTA
5 ResNeXt101+DeepAug+AugMix, BatchNorm Adaptation, Improving robustness against common corruptions by covariate shift adaptation 44.00 2020-06-30 📦 bethgelab/robustness 📦 Claydon-Wang/OFTTA
6 EfficientNet-L2 Noisy Student + ENT 📚 If your data distribution shifts, use self-learning 19.70 2021-04-27 📦 bethgelab/robustness
7 EfficientNet-L2 Noisy Student + RPL 📚 If your data distribution shifts, use self-learning 17.40 2021-04-27 📦 bethgelab/robustness
8 Model soups (ViT-G/14) 📚 Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time 4.54 2022-03-10 📦 mlfoundations/model-soups 📦 Burf/ModelSoups 📦 facebookresearch/ModelRatatouille

All Papers (8)