DiDi

Distractor Distilled Dataset

Dataset Information
Modalities
Videos
Introduced
2024
License
Unknown
Homepage

Overview

DiDi is a distractor-distilled tracking dataset created to address the limitation of low distractor presence in current visual object tracking benchmarks. To enhance the evaluation and analysis of tracking performance amidst distractors, we have semi-automatically distilled several existing benchmarks into the DiDi dataset. The dataset is available for download at this URL: https://go.vicos.si/didi

Variants: DiDi

Associated Benchmarks

This dataset is used in 1 benchmark:

Recent Benchmark Submissions

Task Model Paper Date
Visual Object Tracking DAM4SAM A Distractor-Aware Memory for Visual … 2024-11-26
Visual Object Tracking SAMURAI SAMURAI: Adapting Segment Anything Model … 2024-11-18
Visual Object Tracking SAM2.1Long SAM2Long: Enhancing SAM 2 for … 2024-10-21
Visual Object Tracking SAM2.1 SAM 2: Segment Anything in … 2024-08-01
Visual Object Tracking AQATrack Autoregressive Queries for Adaptive Tracking … 2024-03-15
Visual Object Tracking ODTrack ODTrack: Online Dense Temporal Token … 2024-01-03
Visual Object Tracking Cutie Putting the Object Back into … 2023-10-19
Visual Object Tracking KeepTrack Learning Target Candidate Association to … 2021-03-30
Visual Object Tracking TransT Transformer Tracking 2021-03-29
Visual Object Tracking AOT AOT: Appearance Optimal Transport Based … 2020-11-05

Research Papers

Recent papers with results on this dataset: