Labeled Lane Markers
The unsupervised Labeled Lane MArkerS dataset (LLAMAS) is a dataset for lane detection and segmentation. It contains over 100,000 annotated images, with annotations of over 100 meters at a resolution of 1276 x 717 pixels. The Unsupervised Llamas dataset was annotated by creating high definition maps for automated driving including lane markers based on Lidar.
Paper: Unsupervised Labeled Lane Markers Using Maps
Source: Unsupervised Llamas Lane Marker Dataset
Image Source: Unsupervised Llamas Lane Marker Dataset
Variants: LLAMAS
This dataset is used in 1 benchmark:
Task | Model | Paper | Date |
---|---|---|---|
Lane Detection | FENetV2 | FENet: Focusing Enhanced Network for … | 2023-12-28 |
Lane Detection | CLRNet (DLA-34) | CLRNet: Cross Layer Refinement Network … | 2022-03-19 |
Lane Detection | CLRNet (ResNet-18) | CLRNet: Cross Layer Refinement Network … | 2022-03-19 |
Lane Detection | BézierLaneNet (ResNet-34) | Rethinking Efficient Lane Detection via … | 2022-03-04 |
Lane Detection | BézierLaneNet (ResNet-18) | Rethinking Efficient Lane Detection via … | 2022-03-04 |
Lane Detection | LaneAF | LaneAF: Robust Multi-Lane Detection with … | 2021-03-22 |
Lane Detection | LaneATT (ResNet-122) | Keep your Eyes on the … | 2020-10-22 |
Lane Detection | LaneATT (ResNet-34) | Keep your Eyes on the … | 2020-10-22 |
Lane Detection | LaneATT (ResNet-18) | Keep your Eyes on the … | 2020-10-22 |
Lane Detection | PolyLaneNet | PolyLaneNet: Lane Estimation via Deep … | 2020-04-23 |
Recent papers with results on this dataset: